Data stories: Perception, reasoning, & credibility Richard Layton Session 1, 2022–02–16

Limitations of common graph types: Four main topics

§ Effective alternatives to pie charts

Judging pie slices is a low-accuracy task¹

- Fill in the blanks with your visual estimates of each pie slice.
- Total should be 100%

I suggest you have a printed copy of these worksheets to write in during the workshop. We have a number of think-write-share activities that for many people work best when thoughts are written down.

¹ Data source: World Bank [2022-01]

Estimate the percentage of each pie slice (fill in the blanks).

Country	Percentage
China	
India	
United States	
Indonesia	
Pakistan	

The total should be 100%.

Judging values along a common axis is a high-accuracy task

- The same data is displayed along a common scale.
- Make new visual estimates (fill in the blanks).

The data from the pie chart is shown below as dots along a common scale.

3D effects distort our judgment even further²

² Data source: World Bank [2022-01]

- Fill in the blanks with your visual estimates of each pie slice
- Total should be 100%

Estimate the	percentage	of each	pie slice	(fill in
the blanks).		-	-	

Country	Percentage
Japan	
Germany	
UK	
France	
Italy	

The total should be 100%.

Again, a common scale improves our visual judgments

- The same data is displayed along a common scale.
- Make new visual estimates (fill in the blanks).

The data from the pie chart is shown below as dots along a common scale.

§ Effective alternatives to bar charts

3D effects always distort our judgment³

³ Data source: World Bank [2022-01]

• Fill in the blanks with your visual estimates of each bar length

Same data—without 3D effects—along a common scale

- The same data is displayed along a common scale
- Make new visual estimates (fill in the blanks).

The data from the 3D bar chart is shown below as dots along a common scale.

With a zero baseline and no 3D effects, bars are OK

- Bar charts must have a zero baseline to avoid deception.
- Ordering rows by the data values facilitates visual comparisons.
- The only information in the bar is the position of its end point. The bar itself is superfluous.
- Dot charts allow direct visual comparison of quantities.
- Dot charts are effective replacements for pie charts and bar charts.

Ordered by magnitude:

Notes

§ Aligning the design to the story

Survey: "What was your reason for taking this postdoc?"⁴

⁴ Data adapted from Main et al. [2021]

Before we can talk about what the chart *says*, we have to agree on what it *shows*.

Write your responses below.

• What does a color represent?

• What does a single color-segment of a bar represent?

• What does the changing height over time of a segment represent?

What ideas are conveyed by the chart?⁵

⁵ Data adapted from Main et al. [2021]

We agree on what the chart *shows*; now we can consider what it *says*.

Additional training in field Other Other employment not available Postdoc generally expected Training in areas outside of PhD field Work with a specific person or place

Write your responses below.

• Describe a trend for one of the six reasons for obtaining postdoc training.

• Compare two of the reasons over time.

• Describe the main idea this chart conveys to you.

*What can we say about the variables?*⁶

```
<sup>6</sup> Data adapted from Main et al. [2021]
```

Choosing an effective chart design depends in part on what variables you have.

FILL IN THE BLANKS to begin summarizing the data structure.

- 1. Time (discrete years) is one categorical variable.
- 2. The other categorical variable is ______.
- 3. The quantitative variable is ______.
- 4. Which is the independent variable? _____

.

Note that discrete time units are not 'continuous', so the time units here are a categorical (not quantitative) variable.

*The appropriate design for a time series is a line graph*⁷

⁷ Data adapted from Main et al. [2021]

Separating the reasons into individual panels clarifies the data

• Describe the main idea this chart conveys to you.

Conventions of the box-and-whisker plot

Designed to show a summary of the distribution of a single quantitative variable.

*Our final design shows distributions of annual percentages*⁸ ⁸ Data adapted from Main et al. [2021]

• Describe the main idea(s) this chart conveys to you.

§ Advice from experts

Match the expert to the advice.^{9,10,11,12}

FILL IN THE BLANKS with letters A–D.

⁹ Cairo [2019]
¹⁰ Doumont [2009]
¹¹ Evergreen [2017]
¹² Tufte [1983]

Expert	Letter	Emphasizes the importance of
A. Alberto Cairo		message
B. Jean-luc Doumont		variables
C. Stephanie Evergreen		revealing the complex
D. Edward Tufte		knowing your main point
		not lying to yourself

Ideas to consider

- Characterize the data structure and content
- Explore a story's context, causality, and complexity
- Align visual and verbal logic by revising iteratively
- Edit to suit the rhetorical goals for each audience
- Control every pixel—avoid thoughtless conformity
- Question are you seeing only what you want to believe?

References

Alberto Cairo. How Charts Lie. W.W. Norton, New York, 2019.

- Jean-luc Doumont. *Trees, Maps, and Theorems*. Principiae, Belgium, 2009.
- Stephanie D. H. Evergreen. *Effective Data Visualization*. Sage, Thousand Oaks, CA, 2017.
- Joyce B. Main, Yanbing Wang, and Li Tan. The career outlook of engineering PhDs. *Journal of Engineering Education*, 110(4):977–1002, 2021. URL https://doi.org/10.1002/jee.20416.
- Edward Tufte. *The Visual Display of Quantitative Information*. Graphics Press, Cheshire, CT, 1983.
- World Bank. Population total for United States, 2022-01. URL https: //fred.stlouisfed.org/series/POPTOTUSA647NWDB.